OBSERVATIONS ON THE LITHODID CRABS OF PERÚ, WITH DESCRIPTION OF TWO NEW SPECIES

Janet Haig ${ }^{1}$

Abstract

Eight species of Lithodidae (Crustacea, Decapoda, Anomura) are reported from deep water off Perú. Two are described as new and a third is illustrated for the first time. The other five species, which were briefly cited from Peruvian waters (del Solar, 1972), are discussed in more detail. Attention is drawn to morphological changes that take place with growth in family Lithodidae. Distribution of the tropical component of the west American lithodids is discussed.

The Lithodidae are a family of anomuran crabs, some of them of large size, which inhabit the littoral zone and depths to at least 2400 m . The family comprises more than 50 species, including such economically important forms as the Alaska king crab. Paralithodes camtschaticus (Tilesius), in the north Pacific, and the centolla, Lithodes antarcticus Jacquinot, off southern Chile and Argentina. Until recently no lithodids were known from Peruvian waters.

In recent years the Instituto del Mar del Perú (IMARPE) has been conducting investigations in deep water, particularly on crustaceans of potential economic importance. Since late 1970 E. M. del Solar, scientific advisor for IMARPE, has collected material of eight species of Lithodidae aboard "SNP-1," "Wiracocha," and the Japanese trawler "Challua japic." Samples of these, which were sent to me for identification by del Solar, form the basis of this report.

Two of the species were previously undescribed. A third was described by Benedict (1895) from a specimen collected at an unspecified locality by the U.S. Fisheries vessel "Albatross"; it is illustrated for the first time in this paper. The other five species were described by Faxon (1893) from material collected by the "Albatross" in the eastern Pacific between $07^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}$ and $05^{\circ} 26^{\prime}$ $20^{\prime \prime} \mathrm{N}$; they were listed, with the first Peruvian records, by del Solar (1972).

The presence of Lithodidae in Perú had been recognized earlier on the basis of unidentified fragments taken from the stomach of "cachalotes" (sperm whales). A ninth Peruvian species is represented by legs and part of the carapace of one such specimen, which is housed in a whaling museum at Tierra Colorada to the south of Paita: del Solar believes it to be a Lithodes (del Solar, 1972: 6, and pers. comm.). 1 have seen a photograph of this crab and agree that it bears a general
resemblance to Lithodes. However, examination of the rostrum (if present) and the abdomen might prove it to belong to Neolithodes. Neolithodes diomedeae (Benedict) is reported from Chile and from México and is therefore to be expected in Peruvian waters.

Measurements given in this report, except where there is a statement to the contrary, refer to the length of the carapace. All measurements were taken to 0.5 mm using a dial caliper. Specimens, including holotypes of the two new species, are in the collections of the Allan Hancock Foundation (A. H. F.). This paper is contribution No. 351 from the Allan Hancock Foundation.

Lithodes Latreille, 1806

Lithodes Latreille, 1806: 39. Type species by monotypy: Cancer maja Linnaeus. Bouvier, 1896: 10, 20.
Carapace spiny; rostrum generally prominent and armed with spines. Antennal acicle (scaphocerite) either well developed, rudimentary, or lacking. Walking legs considerably longer than greatest width of carapace. Second (basal) abdominal somite with median plate fused to lateral plates, and usually with laterals fused to marginal plates; on abdominal somites $3-5$, median plate replaced by a membranaceous area covered with calcified platelets; lateral plates of somites 3-5 distinct and paired; marginal plates of somites 3-5 distinct and variable in number, present on both sides in males, on right side only in fenales.

Lithodes panamensis Faxon, 1893

Lithodes panamensis Faxon, 1893: 166; Faxon, 1895: 50, pl. 10 figs. 1, 1 a-c; Bouvier, 1896: 24; del Solar, 1972: 5. 14.

[^0]Diaghosis: Carapace covered wilh low, warty protuberances; two pairs of spines on gastric region. two spines on cach branchial region, a pair on cardiac and a pair on intestinal region; lateral spines consisting of outer orbital, anterolaterat, hepatic, and three branchials. Gastric and branchial regions very convex, delined by deep depressions, Rostrum strongly inclined upwadd, keminating in a median and two lateral spines: ventral process long but not visible in dorsal view. Antennal acicle long, rudimentary, or absent. Abdominal plates covered with low tubereles; basal (second) somite with a distinct suture on each side separating marginal plate from fused median and lateral plates.

Pravious records: $07^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}, 79^{\circ} 14^{\prime} \mathrm{W}, 458$ Tms 1837 m | (Faxon, 1893. 1895). $03^{\circ} 48^{\circ} \mathrm{S}, 81^{\circ} 22^{\prime}$ W, $680 \mathrm{~m} ; 07^{\circ} 59^{\prime} \mathrm{S}, 80^{\circ} 22^{\prime} \mathrm{W}, 760-800 \mathrm{~m}$; latitude of Pisco $113^{\circ} 44^{\prime} \mathrm{Sl}$, from stomach of a sperm whate: $17^{\circ} 34^{\prime} \mathrm{S}, 71^{\circ} 55^{\prime} \mathrm{W}, 850 \mathrm{~m}$ (del Solar, 1972).

Material examined: Ovigerous female; off Perú. $07^{\circ} 59^{\prime} \mathrm{S} .80^{\circ} 22^{\prime} \mathrm{W} ; 760-800 \mathrm{~m}$, hard bottom; November 1971; E. M. del Solar on trawler "Challua japic."

Measurements: Length of carapace excluding rostrum. 100 mm : maximum width of carapace excluding lateral spines, 108 mm ; length of right, third walking leg: merus, 78 mm ; carpus, 44 mm ; propodus, 70.5 mm ; dactyl. 45.5 mm .

Remarks: My specimen agrees well with the description and illustration of the holotype, a female 79 mm long excluding the rostrum. A few minor differences were noted. The three terminal rostral spines are more elongate than the rostral spines of the type; the proximal portion of the rostrum is also longer and advanced beyond the eyestalks. A pair of small spines on the cardiac region of the carapace was not mentioned by Faxon, although his illustration, perhaps erroneously, shows a median spine in that area. The lateral hepatic spines are much larger than they appear in the illustration of the holotype. On each antennal peduncle there is a rudimentary, conical acicle, instead of the long, slender one occurring on the right peduncle in the type.

A specimen collected by del Solar at $17^{\circ} 34^{\prime} \mathrm{S}$. has a carapace 190 mm long and measures 970 mm between the tips of the extended legs (del Solar, 1972: 14).

Lithodes wiracocha, new species

Figure 1
Lithodes n. sp.: del Solar. 1972: 14.
Description: Carapace a little longer than broad: surface and all margins densely covered with small. sharp spinules. some of the marginal ones tending to
 short, stond spines, and sepatated freme region by a deep, lamserse depresacm. (ad region well defined, with a pair of amall efome Branchial regions separated from cardiac seaten $\mathrm{H}_{\text {, }}$ deep, obligue grooves; each branchial feguon will, at well developed spine opposite sulcos weparathes spat trie and candiac regions. Intestinal region wath as pars of smatl spines. Outer orbital angle marted by at long, stender spine; a shorter one at anterolateral angle; a long, strong marginal heparic spinc: three lateral branchial spincs, the most anterior one larges. others not much langer than a few enlarged, laterally situated surface spinules.

Dorsal portion of rostrum inclined upward, with two terminal spines and a pair of median lateral spines; proximal half densely covered with minute spinules to base of median spines; ventral process rather short and not visible in dorsal view, covered proximally with minute spinules.

Eyestalks short, somewhat constricted at about middle, and unarmed, with cornea situated laterally and ventrally. Second segment of antennal peduncle with several spines on its outer side, the most distal one large and elongate and reaching end of penultimate (fourth) segment; acicle rudimentary, conical.

Chelipeds subequal in length, but right somewhat stouter than left; small, thornlike spines, disposed in longitudinal rows, on merus. carpus. and chela; spines somewhat enlarged on ventral surface of ischium. Walking legs long and slender: ischium. merus, carpus, and propodus covered on all sides by longitudinal rows of thorny spines. these a little larger dorsally and ventrally; dactyl with several row's of spines reaching almost to tip.

Abdominal plates, and platelets of somites 3-5, densely covered with sharp spinules. Basal abdominal somite with a median pair of small spines: a narrow. spinule-free line on each side in position of suture which separates marginal from fused median and lateral plates in a few species of Lithodes. but in this case no actual suture visible. Lateral plates of left side edged with numerous long, sharp spines. many themselves hearing two or three spinules along each side; marginal plates of right side drawn out into still longer compound spines.

Previous records: $03^{\circ} 48^{\prime} \mathrm{S}, 81^{\circ} 22^{\prime} \mathrm{W}, 680 \mathrm{~m}: 07^{\circ}$ $59^{\prime} \mathrm{S}, ~ 80^{\circ} 22^{\prime} \mathrm{W}, 800 \mathrm{~m}$ (del Solar. 1972).

Material examined: Holotype, ovigerous female. A.H.F. 712; 12 mi. SW Banco de Mancora. Perú: 620 m . mud botom: 15 March 1971: E. M1. del Solar on trawler "Wiracocha."

Measurements: Length of carapace excluding rostrum. 103.5 mm : rostrum, $16 \mathrm{~mm}:$ maximum width of carapace excluding lateral spines. 97 mm : length of right, third walking leg: merus. 78 mm : carpus. 48.5 mm: propodus. 79 mm : dactyl. 47 mm .

Etymology: From Tici Wiracocha, the creator god of Inca mythology, and his namesake. the trawler "Wiracocha" aboard which the holotspe was col-

A \qquad

D \qquad

Figure 1. Lithodes wiracocha, new species, holotype. A, animal in dorsal view; B, anterior part of carapace, dorsal view; C, same, lateral view; D, right antennal peduncle. Scale $\mathrm{A}=$ $30 \mathrm{~mm} ; \mathrm{B}=15 \mathrm{~mm} ; \mathrm{C}=10 \mathrm{~mm} ; \mathrm{D}=5 \mathrm{~mm}$.
lected．To be trated as a noun in apposition to the generic name．

Remarks：This species is distinguished from all other described Liltoders by the dense spintation of the cerrapace abd walking legs．As in L ． morroyi Henderson（a southen hemisphere spe－ cies）and L．tropicalis A．Milne－1 Bewards，the rostrum is inclined upward and bilureate at the lip．Lithodes pamamemsis Faxon also has an up－ turned rostrim，which however is trifureate al the tip；Paxon＇s species is luther distinguished from L ．wiracochar by the pronounced convexity of the gastric and branchial regions of the cara－ pace．The dorsal portion of the rostrum of L ． artarcricus Jacquinot，which inhabits the southern part of the South American continent，is shorter than the ventral process and the latter is clearly visible in dorsal view．

Several stalked barnacles are attached to the chelipeds and walking legs of the holotype：these have not yet been identified．

Del Solar（1972：15）reported a specimen with a span of 1.07 m between the tips of the extended legs．An equivalent measurement on the holotype is only 0.58 m.

Paralomis White， 1856

Paralomis White，1856：134．Type species by mono－ typy：Lithodes granulosa Jacquinot．Bouvier， 1895：185：Bouvier，1896：12， 21.
Leptolithodes Benedict，1895：484．Typc species not designated．
Pristopus Benedict．1895：486．Type species not designated．
Carapace with spines，tubercles，or other orna－ mentation according to the species；rostrum short and generally armed with spines．Antennal acicle（scapho－ cerite）well developed，usually triangular and armed with several spines on margins．Second（basal） abdominal somite fused into a single plate；median plate of somites 3－5 entire；lateral plates of somites $3-5$ distinct and paired；in males．marginal plates usu－ ally fused to laterals，at least in part．on somite 3 and distinct on somites 4 and 5 ；in females，marginal plates of somites $3-5$ present on right side only．

Paralomis longipes Faxon． 1893

Paralomis longipes Faxon，1893：165；Faxon，1895： pl．9；Bouvier，1896：25：del Solar．1972：5， 14. Leptolithodes longipes：Faxon，1895： 48.

Diagnosis：Carapace and abdomen thickly covered with small，blunt tubercles，each encircled by a ring of short，stiff setae；a median spiniform tubercle on anterior patt of gastric region；anterolateral and outer orbital spines sometimes enlarged，other laterals （hepatic and three or four branchials）short．Gastric，
cardiace and branchial despons viell of toherant；browses definings seles of sata． hecoming indistinct posteriotly and wot（omit
 in a median inferior and two lateral superase ：fyn dorsally a median spinule all base of latter pan and one or two lateral spinules on each side：ventsal surface with a protuberance bearing one or lus spinules．Antennal acicle with several longe，slender npines．Walking legs very fonge prismatic，with long＇ tudinal rows of stronge thormlike spincs．

Previous records： $05^{\circ} 26^{\prime 2} 21^{\prime \prime} \mathrm{N}, 866^{\circ} 55^{\circ} \mathrm{W}, 771$ fims ［1410 m｜（Faxon，1893，1895）． $07^{\prime 5} 59^{\circ} \mathrm{S}$ ，810＂22＇W。 $760-800 \mathrm{~m} ; 16^{\circ} 29^{\prime} \mathrm{S}, 73^{\circ} 33^{\prime} \mathrm{W} .1300 \mathrm{~m}$ rdel Sollar． 1972）．

Material examined：Nate；off Peroí．（1） $\left.7^{\circ} 5^{\circ}\right)^{\mathrm{S}}$ S． $80^{\circ} 22^{\prime} \mathrm{W} ; 760-800 \mathrm{~m}$ ，hard bottom；Novemher 1971： E．M．del Solar on rawler＂Challua japic．＂

Measuremomas：Length of carapace excluding ros－ trum， 106 mm ：rostrum， 14 mm ：maximum width of carapace． 117 mm ；length of right，third walking leg：merus， 101 mm ；carpus， 56 mm ；propodus． 99 mm：dactyl． 76.5 mm ．

Remarks：Faxon＇s deseription and illustration were based on a male 84 mm long including the rostrum．My specimen differs in only a few details．The outer orbital and anterolateral spines are no larger than the other lateral spines．whereas they are enlarged in the illustrated type．In the Peruvian specimen there are two distinct spinules on each side of the rostrum proximal to the termi－ nal pair of spines．The acicle of the left antenna has six spines and that of the right antenna cight： Faxon described and figured only five spines on an acicle of the male type．

Numerous stalked barnacles are attached to the chelipeds and walking legs．

Paralomis aspera Faxon． 1893

Paralomis aspera Faxon，1893：164：Favon．1895：
pl．8：Bouvier．1896：26；del Solar．1972：5． 14. Leptolithodes asper：Faxon．1895： 47.

Diaghosis：Carapace and abdomen thickly covered with papillae or tubercles．each encircled by a ring of stiff setae：no surface spines：a sharp outer orbital and anterolateral spine．and four or five lateral branchial spines．Gastric，cardiac．and branchial regions well defined and prominent．Rostrum short． indistinctly tripartite．multispinose．lower part armed with as many as five spines．Antennal acicle with several spines on each margin and one on both upper and lower side near base．Walking legs of moderate length．stout．densely spinose．

Previous records： $07^{\circ} 06^{\prime} 15^{\prime \prime}$ N゙。 $80^{\circ} 34^{\circ} \mathrm{H} .695 \mathrm{fms}$ ［1270 m］（Faxon．1893．1895）． $03^{\prime} 48^{\prime} \mathrm{S} .81^{=} 20^{\prime} \mathrm{W}$ ． 560 m （del Solar．1972）．

Material examined；Male（juvenile）：off Peri： 1971；E．M．del Solar．
E \qquad

Figure 2. Paralomis papillata (Benedict). A, animal in dorsal view; B, anterior part of carapace; C, rostrum, lateral view; D, right antennal peduncle; E, tubercles of carapace. Scale $\mathrm{A}=30 \mathrm{~mm} ; \mathrm{B}=15 \mathrm{~mm} ; \mathrm{C}=6 \mathrm{~mm} ; \mathrm{D}=4 \mathrm{~mm} ; \mathrm{E}=c a .7 \mathrm{~mm}$.

Mrasmemoms: Length of carapace including wstrum, 75 mm ; maximum width of carapace, 75 mm ; length of right, third watking leg: merts, 30 mam: carpus, 20 mm; propodus, 27 mmon dactyl, 24 mm.

Remarks: The above diagnosis was derived from the description and illastration of the bolotype, a female 122 mm long inclading the rostrum. The much smatler Peruvian specimen shows striking differences in the surface ormamentation. Each papilla of the carapace and ahdomen is raised on a stalk, the whole forming a blumt-lipped (papilliferous) spine; at the base of the papilla is the ring of setae described and figured by Faxon. Toward the carapace margins, and on the chelipeds and walking legs, these spines become more elongate and in many, particularly those of the walking legs, the terminal papilla is tipped with a minnte, sharp, comeous spinule. Comparison of a good series of specimens of different sizes would be of interest. Inerease of size of individuals is probably accompanied by a gradual reduction of the surface armature from elongate, papilliferous spines bearing setae at the base of the papilla to low, papilliferous tubercles on the carapace and abdomen, these still retaining a ring of setac, and to spines of the usual kind on carapace margins and pereiopods.

The rostrum in the Peruvian specimen is multispinose as in the type, but shorter and more symmetrical. The eyes have two strong terminal spines, one dorsal and one mesial, extending well beyond the cornea, and there are about twelve smaller spines on the dorsal surface of the eyestalk. All these spines have a ring of setae below the papillose tip.

Faxon (1893: 165) mentioned that the type was "infested with a huge Peltogaster 36 mm in breadth." Ny specimen also bears a large abdominal sacculinid, in this case 34 mm across.

Paralomis papillata (Bencdict, 1895)
Figure 2
Leptolithodes papillatus Benedict. 1895: 485. Paralonnis papillata: Bouvier, 1896: 25.

Diagnosis: Carapace and abdomen thickly covered with small, papilliform tubercles, each bearing stiff setae over summit; no surface spines; outer orbital spine well developed, lateral margins otherwise with small tubercles only. Branchial regions more protuberant than gastric and much more so than cardiac: grooves defining sides of cardiac well defined, meeting at posterior end of this region and continuing as a single deep groove to posterior margin of carapace. Rostrum terminating in a median inferior and wo lateral superior spines, latter pair not reaching end
of eyes: ventral bulace with an unamment Ney spinulate problocrance, Amemal atrele vall long, slender spincs. Walliong leges ver,
 short, stonl spines.
 haps south of that region" (bencolict, 1895)

Material examined: Male; off J'crú, ofr"31' S. $81^{\circ} 01^{\prime}$ W: 712-744 m, mud and hard sand: 17 Masy 1971: 1: M. del Solat on R/V "SNP-1."

Mosammemoms: l.cngth of carapace exclading bostrum, 100 mm ; rostrum, 12 mm ; maximum wiald of carapace, 112 mm; length of right, third walling leg: merus. 64 mm ; carpus, 40.5 mm ; propodius. 6.3 mm : dactyl. 55 mm .

Remarks: Del Solar's collection includes two elosely allied but distinct species, both of which agree in most respects with the original description of Paralomis papillata. Since no illustration of that species was ever puhlished, it was necessary to compare material of both Peruvian forms with the holotype. Photographs of the type, provided by Henry B. Roberts. confirm the identity of the above specimen with Benedict's species.

The type (USNM I 8536), which was collecied by the "Alhatross," is the cedysal cast of a large male. It is accompanied by the following information: "No lahel but with spns. from off lower Cal." According to Mr. Roberts the length of the carapace with rostrum is 118 mm , length of the rostrum 10 mm , and breadth of the carapace 130 mm .

My specimen agrees very closely with the type. The carapace is not quite so broad in proportion to its length. The ventral side of the rostral protuberance is minutely denticulate, while in the type this area is practically smooth. Both acieles are similar in structure to the left acicle of the holotype; but in the type specimen the right acicle has a strong terminal spine. and three lateral and two mesial spines which are considerably shorter.

The Peruvian specimen has a few stalked barnacles attached to the walking legs: these are neither so large nor so mumerous as those found on the A.H.F. specimens of Paralomis longipes and Lithodes wiracocha.

Paralomis inca. new species

Figures 3 and 4
Description (Adults): Carapace a little broader than long. covered with tubercles of different sizes each bearing a cluster of very short. stiff setae over summit. Gastric region moderately convex. some of

A \qquad

D

B

E \qquad

Figure 3. Paralomis inca, new species, holotype. A, animal in dorsal view; B, anterior part of carapace; C , rostrum, lateral view; D , right antennal peduncle; E, tubercles of carapace. Scale $\mathrm{A}=27 \mathrm{~mm} ; \mathrm{B}=15 \mathrm{~mm} ; \mathrm{C}$ and $\mathrm{D}=4 \mathrm{~mm} ; \mathrm{E}=c a .5 \mathrm{~mm}$.
its lubereles small and rounded, others larger, confal, with papilliform or pointed tip (latter lype istmost spiniform in largest individuals, definitely so in smallest adult). Caddac region separated from gastricedsy a deep, rectangular depression; will several conical twhereles and smaller, romoded ones. Branchial regions more protuberant than gastric and much more so than cardiac, separated from latter region by distinct grooves joining at its posterior end and contiming as a single deep groove to posterior margin of carapace: branchials with both large and small tubercles as on other regions, and also with scattered swellings each bearing several small tubereles, a few of latter tending to become spiniform. A number of large, low, pustulous tuhereles grouped on posterior part of calrapace near midline. Outer orbital angle marked by a sharp spine; lateral margins otherwise with large and small tubercles, some of the larger ones spiniform.

Rostom terminating in a median inferior and two lateral superior spines, latter pair reaching or surpassing end of eyes; dorsally a median tubercle just proximal to superior pair of spines, and a pointed tubercle on either side at base; underside of inferior spine with a large, distinctly spinulate protuberance.

Eyestalks armed with a few spinules dorsally, largest one terminal and extending beyond cornea. Second segment of antennal peduncle with three or four strong spines laterally, distal one reaching onto terminal segment of peduncle. Acicle with two very strong spines, both appearing to be terminal and of about equal length; also a strong lateral spine and one or two lateral spinules, two strong mesial spines, and two or three very small dorsal spinules.

Chelipeds subequal in length, but right slightly stouter than left. All scgments with strong, thornlike spines, each bearing short setae at tip. Walking legs long, prismatic, with longitudinal rows of strong, thornlike spines and short, pointed tubercles, these setiferous as elsewhere on body.

Abdomen covered with small tubercles, conical or papilliform and setiferous at summit.
(Juvenile): Carapace covered with long, slender spines, each with a tuft of long, flexible setae at and near tip; tip rounded and with a minute corncous spinule. A number of longer, stouter spines occurring as indicated on figure 4 A : these sharp-tipped with rudimentary setae. Median area of posterior part of carapace with pustulous tubercles of different sizes: most of these raised on short, stout stalks and thus almost mushroomshaped. Spinulation of chelipeds and walking legs as in adults, but spines proportionately longer and more slender; terminal setae in a long tuft. Abdomen densely covered with long, slender spines. each tipped with a tuft of long. flexible setae.

Material examined: Holotype, ovigerous female, A.H.F. 718; off Peru, $06^{\circ} 31.5^{\prime} \mathrm{S}, ~ \$ 1^{\circ} 01.5^{\prime} \mathrm{W}: 712-$ 744 m, mud and hard sand: 17 May 1971; E. M. del Solar on R/V "SNP-1."

Paratype, male (juvenile); 12 mi SW Banco de

A

Figure 4. Paralomis inca, new species. juvenile paratype. A, carapace; B. carapace spines. Scale $A=$ $30 \mathrm{~mm} ; \mathrm{B}=c a .5 \mathrm{~mm}$.

Mancora, Perú: 620 m . mud bottom: 15 March 1971: E. M. del Solar on trawler "Wiracocha."

Paratypes. male and ovigerous female: off Perú. $07^{\circ} 59^{\prime} \mathrm{S}, 80^{\circ} 22^{\prime}$ W: 760-800 m, hard bottom: November 1971: E. M. del Solar on trawler "Challua japic."

Measurements in $m m$: The measurements for the (holotype), a female, and two males. respectively, are as follows: length of carapace excluding rostrum. (108.0), 93.5. 80.0. 69.0: rostrum. (13.0). 10.0. 10.5. : maximum width of carapace. (123.0). 109.0. 93.0, 69.0; length of right. third walking leg - merus. (53.0), 50.5. 47.0, 38.0; carpus. (37.0). 35.0. 31.0 . 21.5; propodus. (50.0). 48.0. 44.0. 28.5: dactyl. $(43.0), 41.5,40.0 .26 .5$.

Etymology: As a noun. "Inca" can refer either to an emperor or chief of Perú in the days before the Spanish Conquest, or to a member of the dominant tribe: as an adjective, of or pertaining to the Incas or their empire. Here it is to be considered to be a noun in apposition to the generic name.

Remarks: Paralomis inca and the closely allied P. papillata share a number of characters. includ-
ing the swollen brathehial regions defined by grooves which enclose the sunken cardiac region and extend as a single deep groove to the posterior margin of the earapace; the lack of well developed spines on the lateral margins. aside from the onter orbital spine: armature of the carapace consisting of conical or papilliform tuhereles with setae over the stmmit (not lorming a ring below the summit as in P. longipes and P. asper(t); and walking legs long and prismatic, with a row of spines on each longitudinal ridge. This combination of characters distinguishes both species from all other members of the genus. The tuhereles of the earapace of P. inca are much less uniform in size and shape than they are in P. papillata; the lateral superior spines of the rostrum are longer, and the ventral protuberance of the median spine is more strongly spinulate; the walking legs are proportionately shorter, and their spines are longer, slenderer and more numerous.

The 69 mm juvenile male is an ecdysal cast. Many of the spines of the carapace are bent near the tip or in the distal half, with the bent spines oriented in no particular direction; this condition may be due to the solt state of the integument. The dorsal portion of the rostrum is missing. The rather startling difference in appearance between juvenile and adults is duplicated in P. aspera Faxon, as I have noted earlier, and probably in other species of l'aralomis as well. Distinctions between species of this genus are based in large part on the form of the surface ornamentation, but little consideration has been given to changes in this ornamentation that may take place with growth.

Del Solar (1972: 14) listed "Paralomis sp." from $06^{\circ} 31^{\prime} \mathrm{S}, 81^{\circ} 01^{\prime} \mathrm{W}$ in $712-744 \mathrm{~m}$. This record might refer to either the new species or P. papillata, which were collected together at that locality.

Lopholithodes Brandt, 1848

Lopholithodes Brandt, 1848 [July]: 174. Type species by monotypy: Lopholithodes mandtii Brandt.
Echinocerus White, 1848 [November]: 47. Type species by monotypy: Echinocerus (Lithodes) cibarius White $[=$ Lopholithodes mandtii].
Ctenorhinus Gibbons, 1855: 48. Type species by monotypy: Ctenorhinus setimanus Gibbons [= Lopholithodes mandtii].
Echidnocerus: Bouvier, 1896: 12, 21.
Carapace tuberculate, broader than long, anterior part of branchial margin extended laterally to cover base of walking legs; rostrum short, armed with spini-
form lubercles. Antennal acicle (scaphocerite) triangular, with row of spines on margins. Carpus of chelipeds with a prominent lobe on inner margin, sometimes covering mouthparts; chelipeds and walking legs fitting neatly together when folded, and sometimes folding under carapace. Sccond (basal) abdominal somite fused into a single plate; median plate of somites $3-5$ entire; lateral plates of somites $3-5$ distinct and paired; in males, marginal plates distinct or fused to laterals on somite 3, distinct on somites 4 and 5: in females, marginal plates of somites $3-5$ present on right side only.

Lopholithodes diomedeae (Faxon, 1893)

Echinocerns diomedeac Faxon, 1893: 164; Faxon, 1895: pl. 7 figs. 3, 3 a , b.
Paralomis diomedeae: Faxon, 1895: 46.
Echidnocerus diomedeae: Bouvier, 1896: 27.
Lopholithodes diomedeae: del Solar, 1972: 5, 14.
Diagnosis: Carapace tuberculate; anterolateral margins irregularly toothed. Rostrum short, with three spines or sharp tubercles, one median inferior and two paired superior. Antennal acicle with four or five spines on each margin. Carpus of chelipeds with inner lobe toothed on margin; outer margin with an unarmed crest. Walking legs longer than chelipeds and longer than greatest width of carapace; on first pair, anterior margin of carpus with an entire crest, of propodus with crest along proximal half and two or three teeth distally; on second and third pairs, carpus and propodus toothed along anterior margin.

Previous records: $07^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}, 79^{\circ} 14^{\prime} \mathrm{W}, 458 \mathrm{fms}$ [837 m]: $07^{\circ} 21^{\prime} \mathrm{N}, ~ 79^{\circ} 35^{\prime} \mathrm{W}, 511 \mathrm{fms}[935 \mathrm{~m}]$ (Faxon, 1893, 1895). $03^{\circ} 48^{\prime} \mathrm{S}, 81^{\circ} 22^{\prime} \mathrm{W}, 680 \mathrm{~m}$: $10^{\circ} 01^{\prime} \mathrm{S}, 79^{\circ} 10^{\prime} \mathrm{W}, 830 \mathrm{~m}$ (del Solar, 1972).

Material examined: Male; off Perú, $10^{\circ} 01^{\prime} \mathrm{S}, 79^{\circ}$ $05^{\prime} \mathrm{W}$; 830 m , hard mud bottom; 19 May 197I; E. M. del Solar on R/V "SNP-1."

Measurements: Length of carapace excluding rostrum, 101 mm ; rostrum, 9 mm ; maximum width of carapace, 128 mm ; length of right, third walking leg: merus. 56 mm ; carpus, 38 mm ; propodus, 39 mm ; dactyl, 47 mm .

Remarks: Faxon described this speeies from two female specimens. My male differs from the description and illustration of the larger, 64 mm type in having the various articles of the chelipeds and walking legs more elongate.

The genus Lopholithodes contains two other species, L. manditii Brandt and L. foraminatus (Stimpson), both from the temperate north Pacific. In those species the walking legs are about as long as the chelipeds and shorter than the greatest width of the carapace, and all the pereiopods are modified to fold under the carapace, the inner marginal crest of the carpus of the chelipeds covering the mouthparts and the whole forming a boxlike structure. In Lopholithodes diomedeae
the legs are long and do not fold beneath the carapace, and the chelipeds are elongate enongh so that the earpal erest cannot cover the monthparts. In the Peruvian specimen, the first male to be reported, the marginal plates of the third abdominal somite are almosi completely lised with the lateral plates. In this chameter L. dionmedeac is closer to L. formminatus than 10 L . mandiii, in which the marginal plates are distinct on the third abdominal segment of males.

In the original description, Faxon (1893) placed this species in Echinocerns and compared it with E. foraminarus Stimpson; later (1895) he changed his mind as to its affinities and allied it with P'aralomis' gramblosa (Jacquinot). Bouvier (1896) retained it in Echmocerns (with spelling Echidnoceras) alongside E. cibarins, E. setimanus (both $=$ mandtii) and E. foraminams. Loplolithodes has since been shown to have priority over Echinocerns, so the correct name for Faxon's species is Lopholithodes diomedeae. It was reported for the first time in this combination by del Solar (1972), for whom 1 had provided an identification.

Glyptolithodes Faxon, 1895

Glyptolithodes Faxon, 1895: 42. Type species by monotypy: Rhinolithodes cristatipes Faxon.
Carapace with a large, conical prominence on gastric region, one on each posterolateral margin. and two on posterior margin; a prominent, crescentic, rounded ridge on each branchial region, enclosing cardiac region in a deep fossa: rostrum conical, with a short, laterally compressed ventral process. Antennal acicle (scaphocerite) triangular, margins spined. Walking legs flattened, nearly spineless, margins lobed or dentate. Second (basal) abdominal somite fused into a single plate: median plate of somites $3-5$ entire: lateral plates of somites 3-5 distinct and paired; in males, marginal plates partially fused to laterals on somite 3 and distinct on somites 4 and 5; in females, marginal plates of segments $3-5$ present on right side only.

Glyptolithodes cristatipes (Faxon, 1893)

Figure 5

Rhinolithodes cristatipes Faxon. 1893: 163: Faxon, 1895: pl. 7 figs. 2. 2 a-c; Bouvier, 1896: 27.
Glyptolithodes cristatipes: Faxon, 1895: 43: del Solar. 1972: 5. 13.
Rhinolithodes (Glyptolithodes) cristatipes: Bahamonde. 1967: 3. pl. 1.
Diagnosis: Carapace broader than long, covered with small granules; outer orbital and anterolateral angles with a smail, blunt tooth; anterolateral (an-
(erios branchaial) maryin will asew com u or teeth: prominances on carbipace is it
 Rostrum shont, conical, anarmed dratall, process denticulate anteriorly, not viablate in fler .al view. Antennal acicle wish a terminal spane and wollo two to four spinules on cach mangin. (inpors of cheh peds flattened, suter margin cristate and sometmones cut into two or three bobes. inner margin with crest expanded :and cut into dentiform loles or armed with several sharp teeth. Walking legs longer than greatest width of carapace in adults; anterior margen of merus, carpus. and propodus cristate, cuests enture or cut into two to several lobes; posterior margen of those articles dentate. Abdomen (uberculate.

Previous records: $07^{\circ} 09^{\prime} 45^{\prime \prime} \mathrm{N}, 80^{\circ} 500^{\prime} \mathrm{W}, 322 \mathrm{fms}$ 1590 ml (Faxon, 1893,1895). S of Banco de Nancora, Perí, 400 m; $03^{\circ} 5 \mathrm{~J}^{\prime} \mathrm{S}, 81^{\circ} 18^{\circ} \mathrm{W}, 800 \mathrm{~m}$; 117° $42^{\prime} \mathrm{S}, 80^{\circ} 26^{\prime} \mathrm{W}, 693 \mathrm{~m}$ (del Solar, 1972). Off Iquique, Chile, depth unrecorded; 25 13' S. $700^{\circ} 31^{\prime \prime}$ W, 245-266 m (Bahamonde, 1967).

Material examined: Female (juvenite); S of Banco de Mancora. Perú, $03^{\circ} 51.3^{\prime} \mathrm{S}$. $81^{\circ} 18.2^{\prime} \mathrm{W}$; 795-800 m, mud bottom: j] January 1971; E. M. del Solar on R/V "SNP-I."
Female: off Perú, 06ㅇ31.5’ S. $81^{\circ} 01.5^{\prime}$ W: 712-744 m, mud and hard sand: 17 May 1971: E. N. del Solar on R / V "SNP-1."

Male; off Puerto Chicama, Perú, $07^{\circ} 42^{\circ}$ S. $80^{\circ} 26^{\circ}$ W; 693 m , rocky bottom; 2 Narch 1971; E. N. del Solar on R/V "SNP-I."

Measurements: Length of male carapace excluding rostrum, 79.5 mm ; rostrum. 6 mm : maximum width of carapace, 98 mm : length of right, third walking leg: merus, 44.5 mm ; carpus, 28 mm ; propodus, 38 mm : dactyl, 37.5 mm . Length of female including rostrum, 89.5 mm . Length of juvenile including rostrum. 27 mmı.

Remarks: The original description of this species was based on a juvenile male specimen. The juvenile collected by del Solar is larger than the 16.5 mm holotype, but agrees closely with it. Adults, on the other hand. show a number of diffcrences. some of which were pointed out by Bahamonde (1967), who reported six large specimens from off lquique and Talaal. Chile. The carapace is broader than long instead of about as long as broad: the setae which decorate its lateral prominences in juveniles are absent in aduls. There are three or four spines. instead of two. on each margin of the antennal acicle. The walking legs are much longer than the carapace width. and the various articles of these legs are proportionately more elongate than they are in juveniles.

On the illustrated specimen (Fig. 5A) the artist has depicted an abnormally small (probahly regenerating) third walking leg. The third walking

Figure 5. Glyptolithodes cristatipes (Faxon). A, male in dorsal view; B, same specimen, carapace in lateral view; C , abdomen of male; D , abdomen of female. Scale $\mathrm{A}=30 \mathrm{~mm}$.
legs are normally about the same size as the other two pairs.

The abdomen of the 89.5 mm female bears a sacculinid 45 mm across.

In his original description of this species, Faxon (1893) referred it provisionally to Rhinolithodes Brandt. Later he examined material of R. wosnessenskii Brandt and concluded that the two species are generically distinct. Characters by which he distinguished Glyptolithodes from Rhinolithodes (Faxon, 1895: 43) include the form of the rostrum and legs and of the cardiac region. which is elevated and spherical in R. wosnessenskii, the type species of Rhinolithodes. Bouvier (1896), who evidently did not know of Faxon's 1895 work, failed to mention Glyptolithodes and retained G. cristatipes in Rhinolithodes, a genus characterized by having the marginal plates of abdominal segments 3-5 com-
pletely fused with the corresponding lateral plates (Bouvier, 1895: 187: 1896: 21). This is true of both sexes, as I have confirmed by examination of a male and a female R. wosnessenskii in the collections of the Allan Hancock Foundation. The very different structure of the abdomen in G. cristatipes (Fig. 5 C. D) confirms Faxon's opinion that his species belongs to a separate genus.

REMARKS ON DISTRIBUTION

Bouvier (1896) showed that the Lithodidae, a family adapted to cold and temperate waters, originated in the North Pacific and underwent tropical submergence during its migration southward along the Pacific coast of the Americas. On that coast it re-emerged at about $42^{\circ} \mathrm{S}$, from which latitude southward it is represented by

Lithodes antarcticns Jacquinot and Paralomis granulosa (Aacquinot) in the littoral and to depths of about 150 and 100 m , respectively. The deepwater, tropical component of this fathat first became known when Faxon (189.3) deseribed Lithodes paramensis, l'aralomis Iongipes. I'. asper, Lopholithodes diontedeat, and Glyptolithodes cristatipes from between $07^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}$ and $05^{\prime \prime} 26^{\prime}$ $20^{\prime \prime} \mathrm{N}$, in 590 to 1410 m . Shortly alterwatds, Benediet (1895) described Paralomis papillata from a specimen collected at an unrecorded depth and an uncertain locality, probably off México.

Rathhun's (1910) pioneer compilation of the decapod Crutacea of Perú included no Lithodidae, because at that time practically no exploration of the deep sea had been made in Peruvian waters. This situation continued to exist until very recently, when the investigations of IMARPE (del Solar, 1972) yielded all five of Faxon's species as well as Paralomis papillata (Bencdict) and the two new species described in the present report. Glyptolithodes cristatipes was recorded from Chile at $25^{\circ} 1^{\prime} \mathrm{S}$ by Bahamonde (1967), who noted that fragments of two undetermined species, a Paralomis and a Leptolithodes [=Paralomis], have been taken from stomachs of sperm whales captured in Chilcan waters. Lithodes panamensis and Glyptolithodes cristatipes are known to occur off northern México (unpublished records). Thus, although much dcep-water exploration of the Pacific American coast remains to be done, a general picture of the "tropical component" of the Lithodidae is beconing clearer: it consists of at least eight benthonic species and, considered as a unit, reaches its northern limit in tropical México but penetrates the temperate Chilean waters to the south.

Faxon (1895: 51) reported small, indeterminable juveniles of "two more species of Lithodes" from the collections of the "Albatross" off trop" ical western America. One of these, taken bctween $16^{\circ} 33^{\prime} \mathrm{N}$ and $0^{\circ} 04^{\prime} \mathrm{S}$ in 1207 to 1847 m , belongs to Neolithodes A. Milne-Edwards and Bouvier, 1894. Neolithodes diomedeae (Benedict) was described off southern Chile from 42° $36^{\prime} \mathrm{S}$ and $45^{\circ} 35^{\prime} \mathrm{S}$ in 2454 and 1920 m , respectively, and has since been reported from $23^{\circ} 39^{\prime}$ N in 1382 m (Parker, 1964: 163). Until more is learned about the genus in the eastern Pacific, it is impossible to say whether Faxon's specimens belong to N. diomedeae or to another, as yet undiscovered form. As 1 complete the final draft of this report, E. N. del Solar informs me (pers. conm.) that he has found a juvenile Neolithodes from Peruvian waters, and that he intends to
 Neolithoreles takion in P'eris lform the evommen at sperm whate (see introduction).

A deep-water specien of hithorles sind twor at P'aralomis necerr in the northeast l'acilace and at least as far soullo as southern Califormia: they are not well known from the seuthern part of thers range, which may overlap to some extent the range of the tropical group of lithodich. Fiaxon's second undelermined lithodes (laxon, 51, pl. 10) fig. 2), a juvenile collected all $21^{\circ} 19^{\prime} \mathrm{N}$, is perhaps a very small specimen of L. eormesi Itenedict, whose reported range is Bering Seat to San Diego, California.

ACKNOWLEDGMENTS

I am pleased to acknowledge the help 1 received from several sources, without which this study could never have been completed. Enrique $\mathbf{~ M}$. del Solar not only furnished the specimens on which it was based. but provided information on additional Peruvian material as well as constant encouragement. Henry B. Roberts provided photographs and information on the holotype of Paralomis papillata (Benedict). A subvention from the Sociedad Nacional de Pesqueria of Lima. Perú, made possible the illustrations. which are the work of Jerry J. Battagliotti.

LITERATURE CITED

Bahamonde. N. 1967. Rhinolithodes (Glyptolithodes) cristatipes Faxon frente a la costa chilena (Crustacea. Decapoda. Anomura. Lithodidae). Not. Mens. Mus. Nac. Hist. Nat.. Santiago, 136: 3-7.

Benedict. J. E. 1895. Descriptions of new genera and species of crabs of the family Lithodidae. with notes on the young of Lithodes camtschaticus and Lithodes brevipes. Proc. U.S. Nat. Mus.. 17:479-488.

Bouvier, E.-L. 1895. Recherches sur les affinités des Lithodes \& des Lomis avec les Paguridés. Ann. Sci. Nat., Zool.. (7) 18:157-213.
——. 1896. Sur la classinication des Lithodinés et sur leur distribution dans les océans. Ann. Sci. Nat.. Zool.. (S) 1:1-16.

Brandt. J. F. 1848. Die Gattung Lithoules Latreille nebst vier neuen ihr verwandten von Wosnessenski entdeckten. als Typen einer besondern Unterabtheilung (Tribus Lithodea) der Ed-

Wards'schen Anomuren. Bull. Phys.-Math. Acad. Imp. Sci. St. Petersbourg, 7:171-176.
del Solar, E. M. 1972. Addenda al catálogo de Crustáceos del Perú. Inf. Inst. Mar Perú, 38: 1-21.

Faxon. W. 1893. Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico, and in the Gulf of California . . . by the U.S. Fish Commission steamer "Albatross," during 1891. . . . VI. Preliminary descriptions of new species of Crustacea. Bull. Mus. Comp. Zool., Harvard Univ., 24:149-220.
1895. Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands . . . by the U.S. Fish Commission steamer "Albatross," during 1891. . . XV. The stalk-eyed Crustacea. Mem. Mus. Comp. Zool., Harvard Univ.. 18:1292.

Gibbons, W. P. 1855. [Description of a new genus and species of crab.] Proc. California Acad. Sci., 1:48-49.

Latreille, P. A. 1806. Genera crustaceorum et insectorum secundum ordinem naturalem in familias disposita, iconibus exemplisque plurimis
explicata. Vol. 1. Paris and Strashourg. xviii +302 pp .

Milne-Edwards, A., and E. L. Bouvier. I894. 'Troisic̀me campagne du yacht llirondelle, 1887. Neolithodes, genre nouveau de la sous-famille des Lithodinés. Bull. Soc. Zool. France, 19:120122.

Parker, R. H. 1964. Zoogeography and ecology of some macro-invertebrates, particularly mollusks, in the Gulf of California and the continental slope off Mexico. Vidensk. Medd. Dansk Naturh. Foren., 126:1-178.

Rathbun, M. J., 1910. The stalk-eyed Crustacea of Perú and the adjacent coast. Proc. U.S. Nat. Mus., 38:531-620.

White, A. 1848. Description of Echinocerus cibarius, a new species and subgenus of Crustacea. Proc. Zool. Soc. London, 16:47-49.
1856. Some remarks on Crustacea of the genus Lithodes, with a brief description of a species apparently hitherto unrecorded. Proc. Zool. Soc. London, 24:132-135.

Accepted for publication March 29, 1973.

RANGE EXTENSIONS FOR SOME CALIFORNIA MARINE ISOPOD CRUSTACEANS

Ernest W. Iverson ${ }^{1}$

Abstract

New range extensions are given for 22 species of California marine isopods. Brief ecological data and intermediate localities are included. Dynamenella dianae and Excirolana kincaidi are added to the California fauna. New localities are given for four species previously known only from the type localities.

Numerous collections of marine isopods have been made by the author along the California coast in the past several years. Examination of this and other material has resulted in 22 new range extensions and numerous intermediate localities being recognized. New records were also encountered while curating a portion of the marine isopod collection in the Department of Invertebrate Zoology, California Academy of Sciences
(CAS), the Hopkins Marine Station collection (HMS), Pacific Grove, California (recently transferred to the CAS collection), and from materials sent to the author for identification. Several new records were obtained from a collection of iso-

[^1]
[^0]: ${ }^{1}$ Allan Hancock Foundation, Univ. Southern California, Los Angeles, California 90007.

[^1]: ${ }^{1}$ Dept. Invertebrate Zoology, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118.

